If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-16t-28=0
a = 1; b = -16; c = -28;
Δ = b2-4ac
Δ = -162-4·1·(-28)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{23}}{2*1}=\frac{16-4\sqrt{23}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{23}}{2*1}=\frac{16+4\sqrt{23}}{2} $
| X=y^2+8y+16 | | 2(×+5)=2x+5 | | 14x2+6x+1=0 | | 0.5x=20(0.5x-4000) | | (2x-7+X-3)/2=x+1 | | (12x-9)+(13x-4)=180 | | (4x+2)=(6x-4) | | (5x)=(2x+18) | | (5x)°=(2x+18)° | | 0=10x-4.9x^2+0.7 | | 70⁰=(5x-15)⁰ | | A=70B=(5x-15) | | –6a(6a)= | | 5d+40=-15 | | 2x-20=280 | | b(7-13)=43 | | 5x-34=214 | | x+5÷3+11=-1 | | 3x(x)+2x-2730=0 | | 5(x-1)+3=48 | | 5(x+3)+7x=-7 | | 8x-9=2x-79 | | _35x=-4x= | | (8x+9)=(2x+79) | | -12+y+(-12)=45 | | 25x^2/5x=0 | | 4x–5=2x–9 | | 5x^2*8x=0 | | 4x–5=2x–9 | | 7x–4=38 | | 7p^2*15p^2=0 | | 5x^2*8x^2=0 |